Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101434, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38387463

RESUMO

The tumor-suppressor p53 is commonly inactivated in colorectal cancer and pancreatic ductal adenocarcinoma, but existing treatment options for p53-mutant (p53Mut) cancer are largely ineffective. Here, we report a therapeutic strategy for p53Mut tumors based on abnormalities in the DNA repair response. Investigation of DNA repair upon challenge with thymidine analogs reveals a dysregulation in DNA repair response in p53Mut cells that leads to accumulation of DNA breaks. Thymidine analogs do not interrupt DNA synthesis but induce DNA repair that involves a p53-dependent checkpoint. Inhibitors of poly(ADP-ribose) polymerase (PARPis) markedly enhance DNA double-strand breaks and cell death induced by thymidine analogs in p53Mut cells, whereas p53 wild-type cells respond with p53-dependent inhibition of the cell cycle. Combinations of trifluorothymidine and PARPi agents demonstrate superior anti-neoplastic activity in p53Mut cancer models. These findings support a two-drug combination strategy to improve outcomes for patients with p53Mut cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , DNA/uso terapêutico , Timidina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
2.
Mol Cancer Res ; 15(12): 1764-1776, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28851812

RESUMO

TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Harmina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Células A549 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Mutação , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Mol Cancer Res ; 11(4): 329-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23364532

RESUMO

A large fraction of non-small cell lung cancers (NSCLC) are dependent on defined oncogenic driver mutations. Although targeted agents exist for EGFR- and EML4-ALK-driven NSCLCs, no therapies target the most frequently found driver mutation, KRAS. Furthermore, acquired resistance to the currently targetable driver mutations is nearly universally observed. Clearly a novel therapeutic approach is needed to target oncogene-driven NSCLCs. We recently showed that the basic helix-loop-helix transcription factor Twist1 cooperates with mutant Kras to induce lung adenocarcinoma in transgenic mouse models and that inhibition of Twist1 in these models led to Kras-induced senescence. In the current study, we examine the role of TWIST1 in oncogene-driven human NSCLCs. Silencing of TWIST1 in KRAS-mutant human NSCLC cell lines resulted in dramatic growth inhibition and either activation of a latent oncogene-induced senescence program or, in some cases, apoptosis. Similar effects were observed in EGFR mutation-driven and c-Met-amplified NSCLC cell lines. Growth inhibition by silencing of TWIST1 was independent of p53 or p16 mutational status and did not require previously defined mediators of senescence, p21 and p27, nor could this phenotype be rescued by overexpression of SKP2. In xenograft models, silencing of TWIST1 resulted in significant growth inhibition of KRAS-mutant, EGFR-mutant, and c-Met-amplified NSCLCs. Remarkably, inducible silencing of TWIST1 resulted in significant growth inhibition of established KRAS-mutant tumors. Together these findings suggest that silencing of TWIST1 in oncogene driver-dependent NSCLCs represents a novel and promising therapeutic strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Oncogenes , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Senescência Celular/genética , Inativação Gênica , Células HEK293 , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteína 1 Relacionada a Twist/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...